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Cauchy-Riemann conditions

Complex algebra

Complex number: z=x+iy (bothxand yarereal,i= \/—_1.)
Complex algebra:

2 +2z,= (xl +1iy, )+ (x2 +1iy, ) = (xl + X, )+ i(y1 + yz) (Anologous to2d vectors.)
22, = (x1 +iy1)(x2 +iy2)= (x1x2 — y1y2)+i(x1y2 +x2y1) (:> cz = c(x+iy)= cx+icy) (:> 2, —Zz)

Complex conjugation: z =(x+iy) =x—iy

= 77 =(x+iy)(x—iy)=x"+y°
Polar representation: z=x+iy =r(cos @ +isin8) = re'’

Modulus (magnitude): ‘Z‘ =\/§=”:\/x2 +y° - ‘lez‘ :‘ZIHZZ‘

Argument (phase): arg(z)=6 = arctan(lj (+m if zisin the 2nd or 3rd quadrants.)
X

= arg(z,z,) = arg(z,) +arg(z,)



Functions of a complex variable:
All elementary functions of real variables may be extended into the complex plane.

o 2 o n

Z Z Z
Example: e* —1+ +—+ T S et =l =)
P 1! nz(;n' 2! ‘= n!

A complex function can be resolved into its real part and imaginary part:
f(@)=ulx,y)+iv(x,y)

Examples : z° = (x+iy)’> = (x* + y°) +i2xy

1 | X . =

—= = +1i
7 x+iy x+y> x4y’

Multi-valued functions and branch cuts:

Example 1: In z =In(re'®) =In[re" "> =Inr +i(0+2nx) =u +iv

To remove the ambiguity, we can limit all phases to (-7, 7).
0= -r1is the branch cut.
Inz with n = 0 is the principle value.

- ~ /2 .
Example 2: 7% =(re'?)"* = [re’(9+2””)]] _ 2 i@ 2nm)12

We can let z move on 2 Riemann sheets so that f(z) = (re'?)"* is single valued everywhere.
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Cauchy-Riemann conditions

Analytic functions: If f(z) is differentiable at z = z, and within the neighborhood of

=2y, f(2) 1s said to be analytic at z = z,. A function that is analytic in the whole
complex plane is called an entire function.

Cauchy-Riemann conditions for differentiability

f.(z)zﬂz fim L EHAD— @) . AF(@)
dz 40 A7 Az—0 Az

In order to let f be differentiable, f'(z) must be the same in any direction of Az.
Particularly , it is necessary that

For Az = Ax, f.(z):gcm Au +iAv _ (9u+i8v

-0 Ax ox  Ox
For Az =iAy, f'(2) :iim0 AM_ZZAV :—iZ—MJr?.
U 1Ay y oy

Equating them we have

ou Ov Ou ov
‘ = , =— <— Cauchy-Riemann conditions
ox oy 0Oy  Ox .




Conversely, if the Cauchy-Riemann conditions are satisfied, f(z) is differentiable:

al+i@ Ax + ou z@ Ay a—uﬂ'@ Ax+ —@H’a—u A
df Af (2) or o EYY o a ox ox )
Y tim 2 im Y Y ~ i LK by X X

dz A0 Az Az—0 Ax+iAy Az—0 Ax +iAy
ou .0v
— \Ax +iA
. (ax lax)( l y) ou .0Ov I({ou .ov
— h e +1 ) and == —4+1— |
Az—0 Ax+iAy ox Ox i\dy Oy

More about Cauchy-Riemann conditions:

1) Itis a very strong restraint to functions of a complex variable.
df ou .0v_oOv ,8u ou ov

Da o a oy aw) )
Ou ov Ou Ov

3) + =0=>Vu-Vv=0=>Vu lVv=u=c lv=c,
Ox Ox Oy Oy

4) Equivalent to % =0, sothat f(z,z )only dependson z:
Z

of o ox ooy ] f( 1) of  .of O:(au _av)ﬂ_(au 'a"J:o:---

> = =0=> —+i—=
07 Ox 07 G‘y 67" ox2 oy Ox

e.g., f = x—iy is every wherecontinuous but not analy tic.




Reading: General search for Cauchy-Riemann conditions:

Our Cauchy-Riemann conditions were derived by requiring f'(z) be the same when z
changes along x or y directions. How about other directions?

Here I do a general search for the conditions of differentiability.

8udx 8udy L 8vdx+8vdy 8u+8u dy L ov 5vdy
df du+idv |\ Ox oy

£(2) ox Oy ox Oy dx 8x oy dx
Z =
dz  dx+idy dx + idy 14D
dx
Now let % = p, thedirection of the change of z. We want tofind the condition under which
X

f'(z) does not depend on p.

[au Ou j (8\/ ov j (au aj .(Gu Ou j (av ov j
| +i i |l+ip)—i| —+—p |+| —
df'(2) 0= d \ Ox 8y ox 8y oy Oy ox Oy ox 8y

dp dp I+ip (1 + ip)
(Gu 8vj+ (8\/ 8uj [ ou _Ov That is, if werequire f'(z) be the same at all directions,

dy Ox dy Ox Ny ox 5 we get the same Cauchy - Riemann conditions.
(1+ip) ou_ _ov
| Oy ox




Cauchy’s theorem

Cauchy’s integral theorem
Contour integral:
J:z f(z2)dz = L (u+iv)(dx+idy) = L (udx —vdy)+ ijc (vdx+ udy)

Cauchy’s integral theorem: If f (z) is analytic in a simply connected region R, [and f'(z)
is continuous throughout this region, | then for any closed path C in R, the contour

integral of f (z) around C is zero:fc f()dz=

Proof using Stokes’ theorem: f V.d\= ILV xV-do

§(de+de ﬂ(aa‘; 882 xdy

ffcf(z)dz =§ (udx—vdy)Jri:f (vdx+udy)

, GG e S o




Cauchy-Goursat proof: The continuity of f'(z) is not
necessary.

Corollary: An open contour integral for an analytic
function is independent of the path, if there is no singular
points between the paths.

| fde=F(z)~F(z)=-[ f(a)dz

Contour deformation theorem:
A contour of a complex integral can be arbitrarily

deformed through an analytic region without changing
the integral.

1) It applies to both open and closed contours.
2) One can even split closed contours.
Proof: Deform the contour bit by bit.
Examples:

1) Cauchy’s integral theorem.

(Let the contour shrink to a point.) C,
2) Cauchy’s integral formula.
(Let the contour shrink to a small

4

“nails” 2

C

“rubber bandsi’

circle.)

v
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Cauchy’s integral formula

Cauchy’s integral formula:

If f (z) 1s analytic within and on a closed contour C, then for any point z, within C,

1 f2

f(ZO)_Zﬂ'i §C — 4 \
Proof : 4

J(2) f(Z) f(2) f(2) 2

dz d dz dz=0 0
R e Mt A A c
ff fQR) 4 § f(z)d _ j f(zo+re )rie®d0  (Let r — 0) 5
€z2—21, G z2—2, A
=27f (z,) Can directly use the contour
deformation theorem.




Derivatives of f(z): f W(ZO):;!.{ ( / (Z; dz
i I¢ Z—ZO n+1

Corollary: If a function is analytic, then its derivatives of all orders exist.
Corollary: If a function is analytic, then it can be expanded in Taylor series.

Cauchy’s inequality: If f(z)=) a,z" is analytic and bounded,
then ‘an‘r <M .(Thatis, a, is bounded.)

,

|z|=r

Proof : £ (0)=nla, ——§ f()

erZ

<M

= la,|r

@
o IR CE

I"

Liouville’s theorem: If a function is analytic and bounded in the entire complex plane,

then this function is a constant.

M
Proof : ‘an‘é—n, let r > oo, then a, =0forn>0. f(z)=aqa,.
r

Fundamental theorem of algebra: P(z)= Zaizi (n>0,a, #0) has n roots.

Suppose P(z) has no roots, then 1/P(z) is analytic and bounded as ‘Z‘ — 0. Then P(z) 1s

constant. That is nonsense. Therefore P(z) has at least one root we can divide out.
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Morera’s theorem: If f(z) is continuous and §C f(2)dz=0 for every closed contour
within a simply connected region, then f(z) is analytic in this region.

Proof :
2 =D
{.f(2)dz=0=[" f(2)dz=F(2,)-F(z)= F'(2) = f () / <o
! \
= F(z)1s analytic ’I ﬁ |
|
= F'(z) = f(z) 1s analytic l\ = ;'
- N /
\\_’/
Why [ f(2)dz = F(2,) = F(3))? ;
%) //—hh‘\\\
Let J. f(2)dz =G(z,z,), then If GQ \
Z |
/
G(z,,2,) = G(z,0)+ G(0,2,) | i
= —G(0,2)+G(0,2,)=—F(z)+F(z,) 1 N I
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http://upload.wikimedia.org/wikipedia/en/9/94/Morera%27s_Theorem.png
http://upload.wikimedia.org/wikipedia/en/1/12/Morera%27s_Theorem_Proof.png

Analytic continuation

Laurent expansion

Taylor expansion for functions of a complex variable:
Expanding an analytic function f(z) about z = z,, where z, 1s the nearest singular point.

( ) 1 (z") \ 3z
f(Z)—szfo_Z § fz dz .

C(z'-zy)—(2—2)

- 22 " \
: f(z)
_ 1 § f(Z') dz' = 1 §§(ZZOj ) dz
27 ¢ ( Zoj 27m ¢
(z'=zy)| 1=
-2,

| Nz
fZZ %) f@) L . @, \\_/

o (Z_ O)n—i-l ( _Z )n—i-l

0 (n)
:Z(;%(Z_Zo)n

\

AN

(z'-zy)
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Schwarz’s reflection principle:
If f(z)1s 1) analytic over a region including the real axis, and 2) real when z is real, then

f(@=1).

f(n)(xo (

<Xy )n "1

Proof : f(z)= Z
= (=)

- £2) = u(x, ) + ivx.y)
Examples: most of the elementary functions. / = PR =t ) — s —)

M
S2F =ulx, —y) + iv(x, —y)
=¥ z) = ulx, ¥) - iv(x, ¥)
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Analytic continuation: Suppose f (z) is analytic around z = z,,, we can expand it
about z = z, 1n a Taylor series:

o pm
f(2)= Z%(Z—Zo)’n

A
This series converges inside a circle with a radius of "
convergence R, = ‘050 —z,|» Where « 1s the nearest
. . ()
singularity from z = z,,. o
We can also expand f (z) about another point z = z; within
o (n) Rl g
the circle Ry: f(z) = Zf—(’zl)(z ~z) . a®
n=0 n.

In general, the new circle has a radius of convergence R, = ‘051 — Zl‘ and contains points
not within the first circle.

(m)
IR

From the first expansion, " (z,) = 3
p f(z) =2, ——

nm=n

© (m) . m—n
Plug into the second expansion, f(z) = Z / (ZO)(ZI ZO) (Z -7 )n
n=0,m=n n' (m - n)'

Consequences:
1) f (z) can be analytically continued over the complex plane, excluding singularities.
2) If f (z) 1s analytic, its values at one region determines its values everywhere.
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Laurent expansion

Laurent expansion
Problem Expanding a function f (z) that is analytic in an annular region (between r and R).

f@)= S

20 JCHL+Co+L,  F'—7
_ § f(2)dz' § f(z")d?
279G 7'-z 2m ¢ 7'-7
_ 1 § f(zHdz' 1 f f(zHdz'
2m Y (2'-z,)—(z2—2,) 2m%(7'-z,)—(2—2,)

_ 1 § f(zHdz N 1 ff f(zHdz'
2@ 72—z, | 2m°% 7'-7,
(z'=zy)| 1= (z2—2) 1—Z_Z

7'-7,
PN )d,il 22 @

27Z-lm O(Z_

_ f(z )dz N
Z(Z 0) c, (Z Z )n+1 Z

2mm1(z z)
Z(Z‘ O)§ f(z )an+l Z(Z‘ Z)" §C2 (f(zz);{il

Z (z—2,)" f (Z )dZ P C is any contour that encloses Z and lies .
<o c( n+1 between r and R (deformation theorem).

§C (z'-z,)"" f(2")dz'




Laurent expansion:

o0 i 1
f@)=Xa,G=2)" a,=o {

f(Z)dz

1
(Zv_ZO)rH

1) Singular points of the integrand.
For n < 0, the singular points are determined by f (z). For n >0, the singular
points are determined by both f (z) and 1/(z'-z,)**!.

2) If f(z) is analytic inside C, then the Laurent series reduces to a Taylor series:

" (z,)
a, = n!

0, n<0.

, n=0,

3) Although a, has a general contour integral form, In most times we need to use

straight forward complex algebra to find a,.
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Laurent expansion: Examples

3

Example 1: Expand f(z) = Z—2 about z,=1.
(z-1)
2 _[G=D+IP _(z=D+3(-D*+3(z-D+1_ 1 3
(=1 (z=1) (z-1) (z-1) z-1

Example 2: Expand f(z) =—
z7+1

1 1( 1 1 1( 1 1
Z: = — — = — —
1@ 7 +1 Zi(z—i z+ij 2i(z—i 2i+z—ij

1 1 1 1 1 =
_Z_i —_2_1 ; ZZ( j (z—1)"

Z—1 2lZ—l =0

about z,=i.

+3+(z-1D
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Branch points and branch cuts

Singularities
Poles: In a Laurent expansion f(z)= Za (z—2z,)", if a, =0 form<-n<0 and a_, #0,

m=—a

then z,, 1s said to be a pole of order n.
A pole of order 1 is called a simple pole.
A pole of infinite order (when expanded about z,)) is called an essential singularity.

The behavior of a function f (z) at infinity is defined using the behavior of f(1/f) atr=0.

Examples:

pl - 1 _i(l_lj_i_l_ 1 R N S ¢ 1
22+1 (z—iD)(z+i) 2i\z—i z+i) 2i| z+i 2i—(z+0) 20 z+i 41—(z+i)/2i

: N2
:_ii+l PR LI has a single poleat z = —i.
2iz+i1 4 2i 2i

( l)n 2n+l 1 (_l)n 1
2)sinz = -
) Z Qn+Dl ;(2n+1)' £2r+1

sinz thus has an essential singularity at infinity.

3) z° +1has a pole of order 2 at infinity.
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Branch points and branch cuts:

Branch point: A point z, around which a function f(z) is discontinuous after going a
small circuit. E.g., z, =1for +/'z-1, z, =0 for In z.

Branch cut: A curve drawn in the complex plane such that if a path is not allowed to
cross this curve, a multi-valued function along the path will be single valued.

Branch cuts are usually taken between pairs of branch points. E.g., for./,.1 , the curve
connects z=1 and z = @ can serve as a branch cut.

Examples of branch points and branch cuts:

1. f(z)=z"=r"(cosaf+isinal)

If a 1s a rational number, a = p/ g, then circling the branch point z = 0 g times will bring
f (2) back to its original value. This branch point is said to be algebraic, and ¢ is called
the order of the branch point.

If a is an irrational number, there will be no number of turns that can bring f (z) back to
its original value. The branch point is said to be logarithmic.
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2. f(2)=+(z=D(z+1)

We can choose a branch cut from z=-1 to z =1 (or any
curve connecting these two points). The function will be
single-valued, because both points will be circled.

Alternatively, we can choose a branch cut which
connects each branch point to infinity. The function will
be single-valued, because neither points will be circled.

It is notable that these two choices result in different
functions. E.g., if f(i) = \/Ei, then

f(=i)=—/2i for thefirst choice and f (i) =~/2i

for the second choice.
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Mapping

Mapping

Mapping: A complex function W(z) =u(x,y)+iv(x,y)
can be thought of as describing a mapping from the
complex z-plane into the complex w-plane.

In general, a point in the z-plane is mapped into a
point in the w-plane. A curve in the z-plane is mapped
into a curve in the w-plane. An area in the z-plane is
mapped into an area in the w-plane.

Examples of mapping:

Translation:

w=2z+2z,

Rotation:

W= 2Z,, OF

. . . p=r-r,
o . if 0
pe'? =re” -re™ :>{

~
7

=V




Inversion:

1
w=—, or
<
L[t
pe'’ = i9:>p r
re o=—0

In Cartesian coordinates:

» X
1 | | x2+y2
W=—=U+IV = - —r ’
Z x+ly y
V=73 2
X +y L

\

A straight line 1s mapped into a circle:

v au
y=ax+b= — =—
u +v

+b

2

2 2
u +v

= b’ +v)+au+v=0.

©1

u
x:

2 2

u —+v

v
Y=""% 3
u —+v

y=0;

A

h

©, 1

L

p=-0




Conformal mapping

Conformal mapping: The function w(z) is said to be conformal at z;, if it preserves the
angle between any two curves through z,,.

If w(z) is analytic and w'(z,)®0, then w(z) is conformal at z,.

Proof: Since w(z) is analytic and w'(z,)®0, we can expand w(z) around z = z,in a
Taylor series:

w= w(zo)+w'(zo)(z—ZO)+%W”(ZO)(2—ZO)2 4.

w—w,

lim

=W'(zy), 0r w—w, ® W (2,)(2—2,).
7—79—0 Z_ZO

w—w,=Ae“(z—z) > p=a+0=¢,—p, =0,-0,
1) At any point where w(z) is conformal, the mapping consists of a rotation and a

dilation.

2) The local amount of rotation and dilation varies from point to point. Therefore a
straight line is usually mapped into a curve.

3) A curvilinear orthogonal coordinate system is mapped to another curvilinear
orthogonal coordinate system .
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What happens if w'(z,) = 0?

Suppose w )(z,) is the first non-vanishing derivative at z,,.

W(n)(Z ) 1 _Brn
W_WozTO(Z_ZO)n:>,O€l(p:;B€l'B(l"€le)n:> P !
' ' p=n0+p

This means that at z = z, the angle between any two curves is magnified by a factor n
and then rotated by /.
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