## Numerical Analysis

Course:- B.Sc. III

From: Dr. Pragya Mishra Assistant Professor Maharana Pratap Govt. P.G.College, Hardoi.

## OUTLINES

Numerical Methods

* Bisection Method
* Regula-falsi Methods
* Newton-Raphson Method
* Newton's Forward and Backward Interpolation formula
* Gauss Forward and Backward,
* Bessel's Interpolation formula
* Sterling's and Evertt's Interpolation formula.
* Numerical Differentiations.
* Numerical Integration using Trapezoidal, Simpson $1 / 3$ and Simpson 3/8 rule.


## Intermediate Value Theorem

If a function $f(x)$ is continuous on some interval $[a, b]$ and $f(a)$ and $\mathrm{f}(\mathrm{b})$ have different signs then the equation $\mathrm{f}(\mathrm{x})=\mathrm{o}$ has at least one real root (zero) or an odd number of real roots in the interval [a,b].


## Bisection Method

- The Bisection method is one of the simplest methods to find a zero of a nonlinear function.
- To use the Bisection method, one needs an initial interval that is known to contain a zero of the function.
- The method systematically reduces the interval. It does this by dividing the interval into two equal parts, performs a simple test and based on the result of the test half of the interval is thrown away.
- The procedure is repeated until the desired interval size is obtained.


## Examples

- If $f(a)$ and $f(b)$ have the same sign, the function may have an even number of real zeros or no real zeros in the interval [a, b].


The function has four real zeros

- Bisection method can not be used in these cases.


The function has no real zeros

## Bisection Method

## Assumptions:

Given an interval [a,b]
$\mathrm{f}(\mathrm{x})$ is continuous on $[\mathrm{a}, \mathrm{b}]$
$f(a)$ and $f(b)$ have opposite signs.
These assumptions ensures the existence of at least one zero in the interval $[\mathrm{a}, \mathrm{b}]$ and the bisection method can be used to obtain a smaller interval that contains the zero.

## Stopping Criteria

Two common stopping criteria

1. Stop after a fixed number of iterations.
2. Stop when the two approximate values $x_{n}$ and $\mathrm{x}_{\mathrm{n}+1}$ are equal.

## Bisection Method



## Example



## Example

Can you use Bisection method to find a zero of : $f(x)=x^{3}-3 x+1$ in the interval $[0,2]$ ?

## Answer:

$f(x)$ is continuous on [0,2]
and $\mathrm{f}(0) * \mathrm{f}(2)=(1)(3)=3>0$
$\Rightarrow$ Assumptions are not satisfied
$\Rightarrow$ Bisection method can not be used

## Example:

Can you use Bisection method to find a zeroof $f(x)=x^{3}-3 x+1$ in the interval $[0,1]$ ?

## Answer:

$f(x)$ is continuous on $[0,1]$ $\mathrm{f}(0) * \mathrm{f}(1)=(1)(-1)=-1<0$

Assumptions are satisfied


Bisection method can be used

## Example

- Use Bisection method to find a root of the equation $\mathrm{x}=\cos (\mathrm{x})$. (assume the initial interval [0.73,0.74])

Question 1: What is $f(x)$ ?
Question 2: Are the assumptions satisfied ?

## Bisection Method

Initial Interval

$$
\begin{array}{lc}
f(a)=-v e & f(b)=+v e \\
a=0.73 & c=0.735 \\
b=0.74
\end{array}
$$

- ve
-ve
$+\mathrm{ve}$
0.73
0.735
0.74
-ve
-ve
$+\mathrm{ve}$
0.735
0.7375
0.74



## Summary

- Initial interval containing the root [0.73,0.74]
- After 8 iterations
- Interval containing the root [0.7390625,0.73914]
- Best estimate of the root is 0.73910 .


## Bisection Method

## Advantages

- Simple and easy to implement
- One function evaluation per iteration
- The size of the interval containing the zero is reduced by $50 \%$ after each iteration
- No knowledge of the derivative is needed
- The function does not have to be differentiable


## Disadvantage

- Slow to converge
- Good intermediate approximations may be discarded


## Regula Falsi Method

- The convergce process in the bisection method is very slow.
- It depends only on the choice of end points of the interval [a,b].
- The function $f(x)$ does not have any role in finding the point c (which is just the mid-point of a and b ).
- It is used only to decide the next smaller interval [a,c] or [c,b].

Consider the equation $f(x)=o$ and let $a$ and $b$ be two values of $x$ that $f(a)$ and $f(b)$ are of opposite signs. Also let $a<b$. the graph of $y=f(x)$ will meet the $x$-axis at the same point between $a$ and $b$, the equation chord joining the two points $[a, f(a)]$ and $[b, f(b)]$ is

$$
\frac{y-f(a)}{x-a}=\frac{f(b)-f(a)}{b-a}
$$

in the small interval ( $\mathrm{a}, \mathrm{b}$ ) the graph of the function can be considered as a straight line. So that x -coordinate of the point of intersection of the chord joining $[a, f(a)]$ and $[b, f(b)]$ with the $x$-axis will give an approximate value of the root. So putting $y=0$.

$$
\begin{aligned}
& \frac{f(a)}{x-a}=\frac{f(b)-f(a)}{b-a} \rightarrow x=a-\frac{f(a)}{f(b)-f(a)}(b-a) \\
& \text { or } x=\frac{a f(b)-b f(a)}{f(b)-f(a)}
\end{aligned}
$$

## Find a root of $3 x+\sin (x)-\exp (x)=0$.

- The graph of this equation is given in the figure.
- From this it's clear that there is a root between o and 0.5 and also another root between 1.5 and 2.0 .
- Now let us consider the function $f$

(x) in the interval [ $\mathrm{o}, 0.5$ ] where $\mathrm{f}(\mathrm{o})$ * f (0.5) is less than zero and use the regula-falsi scheme to obtain the zero of $f(x)=0$.

Iteratio
Iteratio
n

no. a $\quad \mathrm{b} \quad \mathrm{c} \quad$| $\mathrm{f}(\mathrm{a})$ * |
| :--- |
| No. |

1

| 2 | 0.376 | 0.5 | 0.36 |
| :--- | :--- | :--- | :--- |
| 3 | 0.376 | 0.36 | 0.36 |

## Newton-Raphson Method (also known as Newton's Method)

Given an initial guess of the root $\mathrm{X}_{\mathrm{O}}$, NewtonRaphson method uses information about the function and its derivative at that point to find a better guess of the root.

## Assumptions:

- $f(x)$ is continuous and first derivative is known
- An initial guess $x_{0}$ such that $f^{\prime}\left(x_{0}\right) \neq 0$ is given


## Derivation of Newton's Method

Let $x_{0}$ be an approximate root of equation $f(x)=0$.If
$x_{1}=x_{0}+\mathrm{h}$ be the exact root, then $\mathrm{f}\left(x_{1}\right)=0$, then $\mathrm{f}\left(x_{0}+\mathrm{h}\right)=0$
The Tay lor's expansion -

$$
f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\ldots . .=0
$$

since $h$ is small, neglecting $h^{2}$ and higher power of $h$.

$$
f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)=0 \Rightarrow h \approx-\frac{f(x)}{f^{\prime}(x)}
$$

$\therefore$ A closer approximation to the root is given by

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

In general, $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
which is known as the Newton-Raphson formula

## Example

Find a zero of the function $f(x)=x^{3}-2 x^{2}+x-3$.
Solution : $x_{0}=4, f^{\prime}(x)=3 x^{2}-4 x+1$
Iteration 1: $\quad x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=4-\frac{33}{33}=3$
Iteration 2: $\quad x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=3-\frac{9}{16}=2.4375$
Iteration 3: $\quad x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=2.4375-\frac{2.0369}{9.0742}=2.2130$

## Summary

| Bisection, | Reliable, Slow <br> Regula <br> Falsi <br> Method function evaluation per iteration <br> Needs an interval [a,b] containing the root, $f(a) f(b)<0$ <br> No knowledge of derivative is needed |
| :--- | :--- |
| Newton <br> Raphson <br> Method | Fast (if near the root) but may diverge <br> Two function evaluation per iteration <br> Needs derivative and an initial guess xo, $f^{\prime}(x o)$ is <br> nonzero |

