Pascal's paradox

From: Dr. Pragya Mishra

Pascal's paradox

- Pressure depends only on the elevation and the type of the fluid; NOT on the size of the fluid container
- All containers have the same pressure at the bottom!!
-referred to as the Pascal's Paradox

FIGURE 3.7 Illustration of Pascal's paradox.

Pressure is the same at the bottom of all containers

The role of elevation also comes into play with respect to pressure in a water distribution system

The Supply point should be higher than the receiving points to allow pressure to be maintained by gravity.

Manometers

- Instrument to measure pressure.
- Simplest kind - U tube manometer
- One end - open to the atmosphere
- Other end - connected to the fluid whose pressure is to be measured
- Contains liquid (gage fluid)- whose deflection indicates the pressure
- Gage liquid - should not mix with the other liquid

- Procedure for measurement:
- Start from the point which is exposed to atmosphere, and move towards the point at which the pressure is desired.
- If you move down in the fluid, pressure increases; and vice versa.

Problem :Compute the pressure at A?

FIGURE 3.10 U-tube manometer.

- $\mathrm{pm}=9.81 \times 13.54=132.8 \mathrm{kN} / \mathrm{m} 3$
- $\mathrm{P} 1=0$
- $\mathrm{P} 2=0.25 \times 132.8=33.2 \mathrm{kN} / \mathrm{m} 2$
- $\mathrm{P} 3=\mathrm{P} 2=33.2 \mathrm{kN} / \mathrm{m} 2$
- $\mathrm{P} 4=\mathrm{P} 3-0.4 \times 9.81=\mathrm{P} 3-3.92=29.28 \mathrm{kN} / \mathrm{m} 2$
- Answer $=\mathrm{Pa}=29.28 \mathrm{kN} / \mathrm{m} 2=29.28 \mathrm{kPa}$

Problem:

Determine the difference in pressure between points A and B Specific wt of water $=62.4 \mathrm{lb} / \mathrm{ft} 3$.

- $\mathrm{P} 1=\mathrm{Pa}+33.75 \times$ үo
- $\mathrm{P} 1=\mathrm{P} 2$
- P3 = P1 - $29.5 \times \mathrm{pw}$
- $\mathrm{P} 4=\mathrm{P} 3-4.25 \times$ үo
- $\mathrm{Pb}=\mathrm{P} 4=\mathrm{Pa}+33.75 \times \gamma \mathrm{o}-29.5 \times \gamma \mathrm{w}-4.25 \times \gamma \mathrm{o}$
- Or
- $\mathrm{Pb}-\mathrm{Pa}=33.75 \times \gamma \mathrm{o}-29.5 \times \gamma \mathrm{w}-4.25 \times \gamma \mathrm{o}$
- = 29.5 үo - $29.5 \times \gamma \mathrm{w}$
- = 29.5($\gamma 0-\gamma w$)
- $\gamma \mathrm{o}=0.86 \times 62.4=53.7 \mathrm{lb} / \mathrm{ft} 3$
- $\mathrm{Pb}-\mathrm{Pa}=29.5 \mathrm{in} \times(53.7-62.4) \mathrm{lb} / \mathrm{ft} 3$
- $=29.5 \mathrm{in} \times(-8.7 \mathrm{lb} / \mathrm{ft} 3) \times(1 \mathrm{ft} 3 / 1728 \mathrm{in} 3)$
- Answer : $\mathbf{P b} \mathbf{- P a}=\mathbf{- 0 . 1 5} \mathrm{lb} / \mathrm{in} 2$

Other types of manometers Well-type manometer

FIGURE 3.12 Well-type
manometer. (Source of photo: Dwyer Instruments, Inc., Michigan City, IN)

(a)

(b)

Inclined well-type manometer

Barometers

- Device for measuring atmospheric pressure.
- Filled with mercury
- Mercury filled tube is inverted in mercury bath. Mercury column drops a little - filled with mercury vapor at 0.17 Pa.
- The height of the mercury provides the atmospheric pressure

$$
\begin{aligned}
& 0+\gamma_{\mathrm{m}} \mathrm{~h}=\mathrm{P}_{\mathrm{atm}} \\
& \mathrm{P}_{\mathrm{atm}}=\gamma_{\mathrm{m}} \mathrm{~h}
\end{aligned}
$$

- Mercury depth decreases 1.0 inch every 1000 ft of increase in altitude. (pressure will decrease as you go up in the atmosphere).
- Specific wt of mercury changes with temp! So adjustments with temp have to be made!

Pressure gages and transducers

Gage - Pressure sensed mechanically.

Pressure transducer - pressure measured at one point, displayed at another - pressure sensed mechanically and converted into an electrical signal.

Problems

- Q. A pressure gage at 19.0 ft from bottom of tank reads $=13.19 \mathrm{psi}$. Another at 14 ft , reads $=15.12$ psi.Compute - specific wt, density, and specific gravity of fluid in tank.
Soln. We have two known pressure points and the distance between them!

$$
p_{2}-p_{1}=-\gamma\left(z_{2}-z_{1}\right)
$$

$(15.12-13.19) * 144=\gamma^{*}(19.0-14.0)$
Therefore $\gamma=55.6 \mathrm{lb} / \mathrm{ft} 3$
Remember $\gamma=\rho g$
Therefore, $\rho=55.6 / 32.2=1.73$ slug/ft3
SG $=\gamma_{f} / \gamma_{w}=55.6 / 62.4=0.891$.
Q.A reservoir of CCl 4 has mass of 500 kg and a volume of 0.315 m 3 . Find the weight, density, specific weight and specific gravity.
Soln. $m=500 \mathrm{~kg}, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s} 2$
$\mathrm{W}=\mathrm{mg}=500 * 9.81=4905 \mathrm{~N}=4.905 \mathrm{kN}$
Density $=\rho=m / V=500 / 0.315=1587 \mathrm{~kg} / \mathrm{m} 3$
Specific wt $=\gamma=W / V=4.905 / 0.315=15.57$
kN/m3

$$
\text { SG }=15.57 / 9.81=1.59
$$

