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Some Integral Equation Examples

t )¢ —
y(t) = I $=Y(S) ds Volterra second kind
O 1=y(s)

(1) = Jt - jo 2\/§y(s) ds Volterra second kind

1
y(t) = Jr - -[o 2\/Ey(s) ds Fredholm second kind

=1 Volterra first kind




Integral Equations from
Differential Equations

First-Order — Volterra Integral Equation
Initial Value Problem Of the Second Kind

y(t)=F@)+ gt y(t), ya) =y,

y(1) - yo = [ Fs)ds+ [ g(s.y(s)ds

Used to prove theorems about differential equations.

Used to derive numerical methods for differential equations.



Volterra IEs of the second kind (VESKS)
Symbolic solution of separable VESKSs
Volterra sequences and iterative solutions
Theory of linear VESKs

Brief mention of Fredholm IEs of 2"9 kind

An age-structured population model



Volterra Integral Equations
of the Second Kind (VESKSs)

Given g : R®*—=R and f: R—R, find y: R—R such that

y(1) = f(0)+ | g(t.5.y(5))ds

[equivalent to an initial value problem if g is independent of t]

y(1) - yo = | F)ds+ | g(s. y(s))ds



Volterra Integral Equations
of the Second Kind (VESKSs)

Given g : R®*—=R and f: R—R, find y: R—R such that

y(t) = f(1)+ | g(t.5.3(s))ds

Linear:  ¥(D) = F()+ | K(2.5) y(s)ds
Separable: k(t,s) = p(t)q(s)

Convolved: k(t,s)=r(t-s)



Symbolic Solution of
Separable VESKs

Solve (1) = V1 - | 2\[sy(s)ds

Let Y(1) = | sy(s)ds
Then y(1) =\t - 2,/1 V(1)

New Problem:

Y'(t) = ty=1t-2tY(t), Y(0)=0

Solution: (1) = \/Ee_tz



Solve y(r)=1- j;(t - $)y(s)ds
Let Y(7) = _[; y(s)ds

and  7(7) = jotsy(s)ds

New Problem:
Y"+Y=0, Y(0)=0, Y'@O)-=1,
/=Y +tY-1

Solution: y(t) = cos t



Volterra Sequences

Given f, g, and y,, define y,, y,, ... by

y(0) = F(O)+ | g(t.5.y,(s)ds

yo(1) = )+ | g(t.5.y,(s)ds

and so on.



Volterra Sequences

Given f, g, and y,, define y,, y,, ... by
4
y, (0= fO+ | glt.s.y, (Nds. n=12...

‘Does y_ converge to some y ?

°If so, does y solve the VESK?



Volterra Sequences

Given f, g, and y,, define y,, y,, ... by
4
y, (0= fO+ | glt.s.y, (Nds. n=12...

‘Does y_ converge to some y ?

°If so, does y solve the VESK?

|f so, is this a useful iterative method?



A Linear Example

y(t)=1- | (- 5)y(s)ds

Let y,=1. Then

t
yl(t): 1_j0(t_S)dS:...: 1‘%2‘2
yz(f): 1—j;(t—s)(1—%52)dsz R— 1‘%124—2—14[4
N}
Yoo = 1- %tz t 2_141L4 _élﬁ +..-= COSt

The sequence converges to the known solution.



Convergence of the Sequence
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A Nonlinear Example

t S —
= 1S— yy((;) “

4
Let y,=0. Then Y,(7) = I02sds = t°

yz(t) J"ZS s ds=t—+ 111(1—1‘)—%111(14-1‘)

¢ In(1-s)+ 3In(1+ s5)+ 2s
y3(t):_[ S
0In(1-s)+ 3In(1+ s)- 25+ 2




Convergence of the Sequence
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Lemma 1
Homogeneous linear Volterra sequences

y, (0= [ k(t.9)y, ()ds. n=12...

decay to 0 on [a, T'] whenever k is bounded.

Proof: (a=0)
Choose constants K, Y and T such that

|k, 9)|< K, |y,®|IY, VO<Lt,s<T
Then

|y, ()| jot

(t.9)y,(s)|ds < | Ky ds= YKi



Given |k(t,9)|< K, |y,®<Y, vVO<t,s<T

yn(t): JOk(taS)yn_l(S)dS, n = 1,2,...

we have |y, (1)|< | KYds = YK

t 1 2.2
v, (0l< [ K(YKs)ds =S YKt

t 1
| y;(D]< _[O KGYK’s*)ds = gYK3t3

In general,

1 .
[y, (O] —YK"t" ¥n so limy, =0

n— 0



Theorem 2
Homogeneous linear VESKs

y(t) = | k(,5) y(s)ds

have the unique solution y=0).

Proof:

Let @ be a solution.
Choose y,= ¢.
Theny =¢ foralln, soy, —o.

But the lemma requires y,—0.
Therefore ¢=0.



Theorem 3
Linear VESKs have at most one solution.

Proof:
Suppose o(t)= f(1)+ Ek(t,s) @(s)ds
and p(0) = F(0)+ | k(t.5) p(s)ds

Let y=¢p—w. Then t
y(t) = | k(t,5) y(s)ds
By Theorem 2, y=0; hence, ¢=uy.



Lemma 4
Linear Volterra sequences with y,=f converge.

Sketch of Proof:
Define y, (1) = f(1)+ | k(t.5)y, ()ds. y,=f

En = Z_l‘ynﬂn - yn+m—1‘

1) 8 —0
2) |Yoir = Vul= < &,

Together, these properties prove the Lemma.



Theorem 5
Linear VESKs have a unique solution.

Proof:

By Lemma 4, the sequence
yn(t):f(t)‘|'Lk(taS)yn_1(S)dS, yO:f

converges to some y. Taking a limit as n — oo:
5
y(t) = f(0)+ | k(t.5) y(s)ds

The solution is unique by Theorem 3.



Fredholm Integral Equations
of the Second Kind (linear)

Given g:R3*->R and f: R—R,find y: R—R such that
b
y(t) = f(0)+ | k(t.5) y(s)ds

Separable FESKs can be solved symbolically.

Fredholm sequences converge (more slowly than
Volterra sequences) only if ||k|| is small enough.

The theorems hold if and only if ||k|| is small
enough.



An Age-Structured Population

Given
An initial population of known age distribution
Age-dependent birthrate
Age-dependent death rate

Find
Total birthrate
Total population
Age distribution



An Age-Structured Population

Simplified Version

Given
An initial population of newborns
Age-dependent birthrate
Age-independent death rate

Find
Total birthrate
Total population



The Founding Mothers

Assume a one-sex population.
Starting population is 1 unit.
Life expectancy is 1 time unit.

Po'= Pos Po(0)=1

Result:

polt) = e



Basic Birthrate Facts

Total Birthrate =
Births to Founding Mothers
+

Births to Native Daughters
b(t) = m(t) + d(t)

Let f(£) be the number of births per mother

of age f per unit time.

m(t) = f(¢) e”



Births to Native Daughters

Consider daughters of ages x to x+dx.
All were born between 7-x-dx and 7-x.
The initial number was b(¢-x)dx.

The number at time ¢ is b(¢-x)e*dx.

The rate of births is f(x)b(t-x)e*dx
=m(x)b(t-x)dx.

d(1) = _Em(x)b(t— X) dx



The Renewal Equation

b(1) = m(t) + Em(x)b(t ~ x)dx

or

b(1) = m(t) + j;m(t — X)b(x) dx

This is a linear VESK with convolved kernel.
It can be solved by Laplace transform.



Solution of the Renewal Equation

Given the fecundity function f, define

e -
Fs)= @) r=r'|—2

1= F(s

Naa”

where L is the Laplace transform. Then

b(t) = e 'r(t)

p(t)y=e" + e_tj;r(x) dx




A Specific Example

Let f(x)=axe*.

Then
b(1) = -V

Na (—Ja-3)
5 €

Ja e(\/E—S)t

B —t Ja  (=Ja-3)
p(t) — 2(\@_2) €

4
4l T 2(Ja _2)

If a=9, then p(t) —1.5.
Exponential growth for a>9.
The population dies if a<9.



Fecundity
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Birth Rate
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Population
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