Introduction to Differential Equations

ordinary differential equations

Definition:

A differential equation is an equation containing an unknown function and its derivatives.

Examples:.

$$
\begin{aligned}
& \text { 1. } \frac{d y}{d x}=2 x+3 \\
& \text { 2. } \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+a y=0 \\
& \text { 3. } \frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}+6 y=3
\end{aligned}
$$

\boldsymbol{y} is dependent variable and \boldsymbol{x} is independent variable, and these are ordinary differential equations

Partial Differential Equation

Examples:

$$
\text { 1. } \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

\boldsymbol{u} is dependent variable and x and y are independent variables, and is partial differential equation.
2. $\frac{\partial^{4} u}{\partial x^{4}}+\frac{\partial^{4} u}{\partial t^{4}}=0$
3. $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial u}{\partial t}$
\boldsymbol{u} is dependent variable and x and t are independent variables

Order of Differential Equation

The order of the differential equation is order of the highest derivative in the differential equation.

Differential Equation

$$
\begin{aligned}
& \frac{d y}{d x}=2 x+3 \\
& \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+9 y=0 \\
& \frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}+6 y=3
\end{aligned}
$$

2

3

Degree of Differential Equation

The degree of a differential equation is power of the highest order derivative term in the differential equation.

Differential Equation

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+a y=0 \\
& \frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}+6 y=3
\end{aligned}
$$

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{5}+3=0
$$

Degree

Linear Differential Equation

A differential equation is linear, if

1. dependent variable and its derivatives are of degree one,
2. coefficients of a term does not depend upon dependent variable.

Example: 1. $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+9 y=0$.
is linear.

Example: 2.

$$
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}+6 y=3
$$

is non-linear because in $2^{\text {nd }}$ term is not of degree one.

Example: 3.

$$
x^{2} \frac{d^{2} y}{d x^{2}}+y \frac{d y}{d x}=x^{3}
$$

is non-linear because in $2^{\text {nd }}$ term coefficient depends on \boldsymbol{y}.
Example: 4. $\frac{d y}{d x}=\sin y$
is non - linear because $\sin y=y-\frac{y^{3}}{3!}+-\quad$ is non - linear
9. Table 1. Classify each differential equation

No	Differential Equations	Ordinary or Partial	Linear or nonlinear	Order	Degree	Independent variables	Dependent variables
1.	$y^{\prime}=x+6 y$						
2.	$y^{\prime \prime}=4 y+y^{3}$						
3.	$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\frac{d y}{d x}-2 y=x^{3}$						
4.	$y^{\prime \prime}+2 x y^{\prime}+4 y=\cos 2 x$						
5.	$\frac{d^{y}}{d x}=\frac{x^{2}-1}{y+4}$						
6.	$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$.						
7.	$\frac{\partial^{2} u}{\partial x^{2}}=c^{2} \frac{\partial^{2} u}{\partial t^{2}}$						

It is Ordinary/partial Differential equation of order... and of degree.... it is linear / non linear, with independen variable..., and dependen variable....

1st - order differential equation

1. Derivative form:

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

2. Differential form:

$$
(1+x) d y-y d x=0
$$

3. General form:

$$
\frac{d y}{d x}=f(x, y) \quad \text { or } \quad f\left(x, y, \frac{d y}{d x}\right)=0
$$

First Order Ordinary Differential equation

$$
\begin{aligned}
& f\left(x, y, \frac{d y}{d x}\right)=O . \\
& \frac{d y}{d x}=f(x, y) \\
& M(x, y) d x+N(x, y) d y=0 \\
& a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
& a_{1}(x) y^{\prime}+a_{0}(x) y=g(x) \\
& \frac{d y}{d x}+P(x) y=Q(x)
\end{aligned}
$$

Derivative form
Differential form

Standard form

Standard form
First order linear differential equation form

Second order Ordinary Differential Equation

$$
\begin{aligned}
& f\left(x, y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}\right)=O . \\
& \frac{d^{2} y}{d x^{2}}=f\left(x, y, \frac{d y}{d x}\right) \\
& a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
& a_{2}(x) y^{\prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
\end{aligned}
$$

nth - order linear differential equation

1. nth - order linear differential equation with constant coefficients.

$$
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots .+a_{2} \frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{0} y=g(x)
$$

2. nth - order linear differential equation with variable coefficients

$$
a_{n}(x) \frac{d y}{d x}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n}}+\ldots \ldots+a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Solution of Differential Equation

Examples

$\mathbf{y}=3 \mathbf{x}+\mathrm{c} \quad$, is solution of the $1^{\text {st }}$ order differential equation $\frac{d y}{d x}=3 \mathbf{c}_{1}$ is arbitrary constant. As is solution of the differential equation for every value of c_{1}, hence it is known as general solution.

Examples

$$
\begin{aligned}
& y^{\prime}=\sin (x) \Rightarrow y=-\cos (x)+C \\
& y^{\prime \prime}=6 x+\mathrm{e}^{x} \Rightarrow y^{\prime}=3 x^{2}+\mathrm{e}^{x}+C_{1} \Rightarrow y=x^{3}+\mathrm{e}^{x}+C_{1} x+C_{2}
\end{aligned}
$$

Observe that the set of solutions to the above $1^{\text {st }}$ order equation has 1 parameter, while the solutions to the above $2^{\text {nd }}$ order equation depend on two parameters.

Families of Solutions

Example

$$
9 y y^{\prime}+4 x=0
$$

Solution

$$
\begin{aligned}
& \int\left(9 y y^{\prime}+4 x\right) d x=C_{1} \Rightarrow \int 9 y(x) y^{\prime}(x) d x+\int 4 x d x=C_{1} \\
\Rightarrow & \int 9 y d y+2 x^{2}=C_{1} \Rightarrow \frac{9 y^{2}}{2}+2 x^{2}=C_{1} \Rightarrow 9 y^{2}+4 x^{2}=2 C_{1}
\end{aligned}
$$

This yields $\frac{y^{2}}{4}+\frac{x^{2}}{9}=C$ where $C=\frac{C_{1}}{18}$.
Observe that given any point (x_{0}, y_{0}), there is a unique solution curve of the above equation which curve goes through the given point.

The solution is a family of ellipses.

Origin of Differential Equations

Solution

1.Geometric Origin

1. For the family of straight lines

$$
\begin{gathered}
y=c_{1} x+c_{2} \quad \text { the differential equation is } \\
\frac{d^{2} y}{d x^{2}}=0
\end{gathered}
$$

2. For the family of curves
A. $y=c e^{\frac{x^{2}}{2}}$ the differential equation is $\frac{d y}{d x}=x y$
B. $y=c_{1} e^{2 x}+c_{2} e^{-3 x}$
the differential equation is

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0
$$

Physical Origin

1. Free falling stone $\quad \frac{d^{2} s}{d t^{2}}=-g$
where s is distance or height and
g is acceleration due to gravity.
2. Spring vertical displacement

$$
m \frac{d^{2} y}{d t^{2}}=-k y
$$

where y is displacement,

$$
\mathrm{m} \text { is mass and }
$$

k is spring constant
3. RLC - circuit, Kirchoff 's Second Law

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{c} q=E
$$

capacitor,
L is inductance, c is capacitance.
R is resistance and
E is voltage

Physical Origin

1.Newton's Low of Cooling

$$
\frac{d T}{d t}=\kappa\left(T-T_{s}\right)
$$

where $\quad \frac{d T}{d t}$ is rate of cooling of the liquid,
is temperature difference between the liquid 'T'
$T-T_{s} \quad$ and its surrounding Ts
2. Growth and Decay

$$
\frac{d y}{d t}=\kappa y
$$

y is the quantity present at any time

