
Introduction to Differential 

Equations 



Definition: 

A differential equation is an equation containing an unknown function  

and its derivatives. 
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Examples:. 

y is dependent variable and x is independent variable,  

and these are ordinary differential equations  
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ordinary differential equations 



Partial Differential Equation 

Examples: 
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u is dependent variable and x and  y are independent variables, 

and is partial differential equation. 

  

u is dependent variable and x and  t are independent variables 
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Order of  Differential Equation  

 The order of the differential equation is order of the highest 

derivative in the differential equation. 

 

Differential Equation          ORDER 
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Degree of Differential Equation  

Differential Equation                           Degree 
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The degree of a differential equation is power of the highest 

order derivative term in the differential equation. 

 



Linear Differential Equation  

A differential equation is linear, if  

1.   dependent variable and its derivatives are of degree one, 

2.  coefficients of a term does not depend upon dependent     

 variable. 

 

Example:            
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 is non - linear because  in 2nd term is not of degree one. 
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Example: 
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 is non - linear because  in 2nd term   coefficient depends on y. 
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 is non - linear because                                           
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It is  Ordinary/partial Differential equation  of order… and of degree…, it is 
linear / non linear, with independent variable…, and dependent variable…. 



1st – order differential equation 

2. Differential form: 
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1. Derivative form:    
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First Order Ordinary Differential 

equation 
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Second order Ordinary Differential 

Equation 
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nth – order linear differential 

equation 
1. nth – order linear differential equation with constant coefficients.
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2. nth – order linear differential equation with variable coefficients  
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Solution of Differential Equation 



            y=3x+c       ,  is solution of the 1st order 

differential equation             , c1 is arbitrary constant. 

As  is solution of the differential equation for every 

value of c1, hence it is known as  general solution. 
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Observe that the set of solutions to the above 1st order equation has 1 parameter, 

while the solutions to the above 2nd order equation depend on two parameters. 



Families of Solutions 
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Example  

Solution  

The solution is a family of ellipses. 
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Observe that given any point (x0,y0), 

there is a unique solution curve  of the 

above equation which curve goes 

through the given point. 
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Origin of Differential Equations 

Solution  

1.Geometric Origin 
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1.   For the family of straight lines 

 
     the differential equation is    

. 2.   For the family of curves   
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Physical Origin 

1. Free falling stone   
g
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where    s  is   distance  or height and 

     g  is   acceleration due to gravity. 

2. Spring vertical displacement  
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where  y    is  displacement, 

      m  is   mass and 

      k   is   spring constant  

3. RLC – circuit, Kirchoff ’s Second Law 
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                                          q    is  charge on 

capacitor, 

  L  is   inductance, 

          c   is   capacitance.  

        R  is   resistance and  

        E   is  voltage  17 
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Physical Origin 

1.Newton’s Low of Cooling  sTT
dt

dT
  

where  
dt

dT
   is   rate of cooling of the liquid,  

sTT 
 is    temperature difference between the liquid  ‘T’ 
 and its surrounding Ts   
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y
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2. Growth and Decay 

y is the quantity present at any time 
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