DIFFERENTIAL EQUATIONS

Dr. Pragya Mishra
Mathematics Department

Difierental Equations

\Rightarrow An equation which involves unknown function and its derivatives
$>$ ordinary differential equation (ode) : not involve partial derivatives
$>$ partial differential equation (pde) : involves partial derivatives
$>$ order of the differential equation is the order of the highest derivatives
Examples:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=3 x \sin y \\
& \frac{\partial y}{\partial t}+x \frac{\partial y}{\partial x}=\frac{x+t}{x-t}
\end{aligned}
$$

\rightarrow second order ordinary differential equation
\rightarrow first order partial differential equation

Dhferental Equations

Modeling via Differential Equations

Note that the set of equations is called a Model for the system. How do we build a Model?
The basic steps in building a model are:
Step 1: Clearly state the assumptions on which the model will be based. These assumptions should describe the relationships among the quantities to be studied.
Step 2: Completely describe the parameters and variables to be used in the model.
Step 3: Use the assumptions (from Step 1) to derive mathematical equations relating the parameters and variables (from Step 2).

Difierentlal Equations

\Rightarrow A linear differential equation of order n is a differential equation written in the following form:
$a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x)$
where $a_{n}(x)$ is not the zero function
\Rightarrow General solution : looking for the unknown function of a differential equation
\Rightarrow Particular solution (Initial Value Problem) : looking for the unknown function of a differential equation where the values of the unknown function and its derivatives at some point are known
\Rightarrow Issues in finding solution : existence and uniqueness

1st Order DE - Separable Equations

The differential equation $M(x, y) d x+N(x, y) d y=0$ is separable if the equation can be written in the form:

$$
f_{1}(x) g_{1}(y) d x+f_{2}(x) g_{2}(y) d y=0
$$

Solution :

1. Multiply the equation by integrating factor:

2. The variable are separated :

$$
\frac{f_{1}(x)}{f_{2}(x)} d x+\frac{g_{2}(y)}{g_{1}(y)} d y=0
$$

3. Integrating to find the solution:

$$
\int \frac{f_{1}(x)}{f_{2}(x)} d x+\int \frac{g_{2}(y)}{g_{1}(y)} d y=C
$$

fst Order DE - Separable Equations

Examples:

1. Solve: $4 x d y-y d x=x^{2} d y$

Answer:

1st Order DE - Separable Equations
Examples:

1. Solve :

Answer:

$$
\frac{d y}{d x}=\frac{x^{2}+2}{y}
$$

1st Order DE - Separable Equations

Examples:
2. Find the particular solution of : $\frac{d y}{d x}=\frac{y^{2}-1}{x} ; y(1)=2$ Answer:

Ist Order DE - Momogeneous Equatons

Homogeneous Function
$f(x, y)$ is called homogenous of degree n if : $f(\lambda x, \lambda y)=\lambda^{n} f(x, y)$
Examples:

$$
f(x, y)=x^{4}-x^{3} y \quad \rightarrow \text { homogeneous of degree } 4
$$

$$
\begin{aligned}
f(\lambda x, \lambda y) & =(\lambda x)^{4}-(\lambda x)^{3}(\lambda y) \\
& =\lambda^{4}\left(x^{4}-x^{3} y\right)=\lambda^{4} f(x, y)
\end{aligned}
$$

$f(x, y)=x^{2}+\sin x \cos y \rightarrow$ non-homogeneous

$$
\begin{aligned}
f(\lambda x, \lambda y) & =(\lambda x)^{2}+\sin (\lambda x) \cos (\lambda y) \\
& =\lambda^{2} x^{2}+\sin (\lambda x) \cos (\lambda y) \\
& \neq \lambda^{n} f(x, y)
\end{aligned}
$$

Ist Order DE - Homogeneous Equations

The differential equation $M(x, y) d x+N(x, y) d y=0$ is homogeneous if $M(x, y)$ and $N(x, y)$ are homogeneous and of the same degree

Solution :

1. Use the transformation to : $y=v x \Rightarrow d y=v d x+x d v$
2. The equation become separable equation:

$$
P(x, v) d x+Q(x, v) d v=0
$$

3. Use solution method for separable equation

$$
\int \frac{f_{1}(x)}{f_{2}(x)} d x+\int \frac{g_{2}(v)}{g_{1}(v)} d v=C
$$

4. After integrating, v is replaced by y / x

Ist Order DF - Homogeneous Equations

Examples:

1. Solve : $\left(x^{3}+y^{3}\right) d x-3 x y^{2} d y=0$

Answer:

1st Order DE - Homogeneous Equations

Examples:
2. Solve :

Answer:

$$
\frac{d y}{d x}=\frac{-2 x+5 y}{2 x+y}
$$

1st Order DE - Gxact Equation

The differential equation $M(x, y) d x+N(x, y) d y=0$ is an exact equation if: $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
The solutions are given by the implicit equation $F(x, y)=C$ where : $\partial F / \partial x=M(x, y)$ and $\partial F / \partial y=N(x, y)$
Solution :

1. Integrate either $M(x, y)$ with respect to x or $N(x, y)$ to y. Assume integrating $M(x, y)$, then :

$$
F(x, y)=\int M(x, y) d x+\theta(y)
$$

2. Now : $\frac{\partial F}{\partial y}=\frac{\partial}{\partial y}\left[\int M(x, y) d x\right]+\theta^{\prime}(y)=N(x, y)$

$$
\text { or : } \quad \theta^{\prime}(y)=N(x, y)-\frac{\partial}{\partial y}\left[\int M(x, y) d x\right]
$$

1st Order DE - Exact Equation

3. Integrate $\theta^{\prime}(y)$ to get $\theta(y)$ and write down the result $F(x, y)=C$

Examples:

1. Solve: $\left(2 x^{3}+3 y\right) d x+(3 x+y-1) d y=0$

Answer:

1st Order DE - Exact Equation

Examples:
2. Solve : $4 x y+1+\left(2 x^{2}+\cos y\right) \frac{d y}{d x}=0$

Answer:

1st Order DE - Non Exact Equation

The differential equation $M(x, y) d x+N(x, y) d y=0$ is a non exact equation if: $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
The solutions are given by using integrating factor to change the equation into exact equation Solution:

1. Check if: $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=f(x) \Rightarrow$ function of x only then integrating factor is $e^{\int f(x) d x}$ or if: $\quad \frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}=g(y) \Rightarrow$ function of y only
then integrating factor is $e^{\int g(y) d y}$

1st Order DE - Non Exact Equaton

2. Multiply the differential equation with integrating factor which result an exact differential equation
3. Solve the equation using procedure for an exact equation

1st Order DE - Non Exact Equation

Examples:

1. Solve: $\left(x^{2}+y^{2}+x\right) d x+x y d y=0$

Answer:

fst Order DE - Non Exact Equation

Examples:
2. Solve: $\frac{d y}{d x}=-\frac{3 x y+y^{2}}{x^{2}+x y}$

Answer:

1st Order DE-Linear Equation

A first order linear differential equation has the following general form:

$$
\frac{d y}{d x}+p(x) y=q(x)
$$

Solution:

$$
u(x)=e^{\int \rho(x) d x}
$$

2. Evaluate : $\int u(x) q(x) d x$
3. Find the solution:

$$
y=\frac{\int u(x) q(x) d x+C}{u(x)}
$$

1st Order DE- Linear Equation
Examples:

1. Solve : $\frac{d y}{d x}+2 x y=4 x$

Answer:

1st Order DE-Linear Equation

Examples:
2. Find the particular solution of :

$$
y^{\prime}+\tan (x) y=\cos ^{2}(x), \quad y(0)=2
$$

Answer:

and Order DE - Linear Equadon

A second order differential equation is an equation involving the unknown function y, its derivatives y^{\prime} and $y^{\prime \prime}$, and the variable x. We will consider explicit differential equations of the form :

$$
\frac{d^{2} y}{d x^{2}}=f\left(y, y^{\prime}, x\right)
$$

A linear second order differential equations is written as:

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d(x)
$$

When $d(x)=0$, the equation is called homogeneous, otherwise it is called nonhomogeneous

2nd Order DE - Lhear Equation

To a nonhomogeneous equation

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d(x) \tag{NH}
\end{equation*}
$$

we associate the so called associated homogeneous equation

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0 \tag{H}
\end{equation*}
$$

Main result:
The general solution to the equation (NH) is given by:

$$
y=y_{n}+y_{p}
$$

where:
(i) y_{h} is the general solution to the associated homogeneous equation (H);
(ii) y_{p} is a particular solution to the equation $(N H)$.

Znd Order DE - Linear Equation

Basic property

Consider the homogeneous second order linear equation

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0
$$

or the explicit one

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Property:
If y_{1} and y_{2} are two solutions, then:

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

is also a solution for any arbitrary constants C_{1}, c_{2}

$2^{\text {nd }}$ Order DE - Reduction of Order

Reduction of Order Technique

This technique is very important since it helps one to find a second solution independent from a known one.
Let y_{1} be a non-zero solution of: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
Then, a second solution y_{2} independent of y_{1} can be found as:

$$
y_{2}(x)=y_{1}(x) v(x)
$$

Where:

$$
v(x)=\int \frac{1}{y_{1}^{2}(x)} e^{-\int p(x) d x} d x
$$

The general solution is then given by

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

$2^{\text {nd }}$ Order DE - Reduction of Order

Examples:

1. Find the general solution to the Legendre equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ Using the fact that : $y_{1}=x$ is a solution.

2nd Order DE - Homogeneous LE with
 Gonstant Goefifolents

Homogeneous Linear Equations with Constant Coefficients

A second order homogeneous equation with constant coefficients is written as: $a y^{\prime \prime}+b y^{\prime}+c y=0 \quad(a \neq 0)$ where a, b and c are constant

The steps to follow in order to find the general solution is as follows:
(1) Write down the characteristic equation

$$
a \lambda^{2}+b \lambda+c=0 \quad(a \neq 0)
$$

This is a quadratic. Let λ_{1} and λ_{2} be its roots we have

$$
\lambda_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

2nd Order DE-Homogeneous LE with

Gonstant Goefifolents

(2) If λ_{1} and λ_{2} are distinct real numbers (if $\mathbf{b 2 - 4 a c}>0$), then the general solution is: $y=c_{1} e^{\lambda_{1} x}+c_{2} e^{n_{2} x}$
(3) If $\lambda_{1}=\lambda_{2}$ (if $b 2-4 a c=0$), then the general solution is:

$$
y=c_{1} e^{\lambda_{1} x}+c_{2} x e^{\mu_{1} x}
$$

(4) If λ_{1} and λ_{2} are complex numbers (if b2-4ac <0), then the general solution is:

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{a x} \sin (\beta x)
$$

Where:

$$
\alpha=\frac{-b}{2 a} \text { and } \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
$$

2nd Order DE - Homogeneous LE w/th Constant Coefifolents

1. Find the solution to the Initial Value Problem

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0 ; y(\pi / 4)=2 ; y^{\prime}(\pi / 4)=-2
$$

2nd Order DE - Non Homogeneous LE

To a nonhomogeneous equation

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d(x) \tag{NH}
\end{equation*}
$$

we associate the so called associated homogeneous equation

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0 \tag{H}
\end{equation*}
$$

Main result:
The general solution to the equation (NH) is given by:

$$
y=y_{n}+y_{p}
$$

where:
(i) y_{h} is the general solution to the associated homogeneous equation (H);
(ii) y_{p} is a particular solution to the equation (NH).

2nd Order DE - Non Homogeneous LE

 Method Undetermined CoefifolentsWe will guess the form of y_{p} and then plug it in the equation to find it. However, it works only under the following two conditions:
the associated homogeneous equations has constant coefficients
the nonhomogeneous term $d(x)$ is a special form

$$
d(x)=P_{n}(x) e^{\alpha x} \cos (\beta x) \text { or } d(x)=L_{n}(x) e^{\alpha x} \sin (\beta x)
$$

where $P_{n}(x)$ and $L_{n}(x)$ are polynomial functions of degree n
Note: we may assume that $d(x)$ is a sum of such functions
Then a particular solution $y p$ is given by:

$$
y_{p}(x)=x^{s}\left(T_{n}(x) e^{\alpha x} \cos (\beta x)+R_{n}(x) e^{\alpha x} \sin (\beta x)\right)
$$

Where:

$$
\begin{aligned}
& T_{n}(x)=A_{0}+A_{1} x+A_{2} x^{2}+\ldots+A_{n} x^{n} \\
& R_{n}(x)=B_{0}+B_{1} x+B_{2} x^{2}+\ldots+B_{n} x^{n}
\end{aligned}
$$

2nd Order DE - Non Homogeneous LE

Method Undetermined Goefifolents

The steps to follow in applying this method:

1. Check that the two conditions are satisfied
2. Write down the characteristic equation and find its root

$$
a \lambda^{2}+b \lambda+c=0
$$

3. Write down the number $\alpha+\beta i$
4. Compare this number to the roots of the characteristic equation If : $\alpha+\beta i$ is not one of the roots $\Rightarrow s=0$

$$
\begin{array}{ll}
\alpha+\beta i \text { is one of the distinc roots } & \Rightarrow s=1 \\
\alpha+\beta i \text { is equal to both roots } & \Rightarrow s=2
\end{array}
$$

5. Write down the form of particular solution

$$
y_{p}(x)=x^{s}\left(T_{n}(x) e^{\alpha x} \cos (\beta x)+R_{n}(x) e^{\alpha x} \sin (\beta x)\right)
$$

Where: $T_{n}(x)=A_{0}+A_{1} x+A_{2} x^{2}+\ldots+A_{n} x^{n} \quad R_{n}(x)=B_{0}+B_{1} x+B_{2} x^{2}+\ldots+B_{n} x^{n}$
6. Find constant A and B by plugging y_{p} solution to original equation

2nd Order DE - Non Homogeneous LE Method Undetermined Coefifolents

1. Find a particular solution to the equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (x)
$$

2nd Order DE - Non Homogeneous LF

Method Undetermined Coefifolents

If the nonhomogeneous term $d(x)$ consist of several terms:

$$
d(x)=d_{1}(x)+d_{2}(x)+\ldots+d_{N}(x)=\sum_{i=1}^{i=N} d_{i}(x)
$$

We split the original equation into N equations

$$
\begin{aligned}
& a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d_{1}(x) \\
& a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d_{2}(x) \\
& \vdots \\
& a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d_{N}(x)
\end{aligned}
$$

Then find a particular solution $y_{p i}$
A particular solution to the original equation is given by:

$$
y_{p}(x)=y_{p 1}(x)+y_{p 2}(x)+\ldots+y_{p N}(x)=\sum_{i=1}^{i=N} y_{p i}(x)
$$

2nd Order DE - Non Homogeneous LF

Method Undetermined Coefifolents

If the nonhomogeneous term $d(x)$ consist of several terms:

$$
d(x)=d_{1}(x)+d_{2}(x)+\ldots+d_{N}(x)=\sum_{i=1}^{i=N} d_{i}(x)
$$

We split the original equation into N equations

$$
\begin{aligned}
& a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d_{1}(x) \\
& a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d_{2}(x) \\
& \vdots \\
& a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d_{N}(x)
\end{aligned}
$$

Then find a particular solution $y_{p i}$
A particular solution to the original equation is given by:

$$
y_{p}(x)=y_{p 1}(x)+y_{p 2}(x)+\ldots+y_{p N}(x)=\sum_{i=1}^{i=N} y_{p i}(x)
$$

