B.Sc. II Paper-II (Organic Chemistry) Lecture-1 Aldehydes and Ketones

Ву

Dr A. K. Yadav Assistant Professor-Chemistry Maharana Pratap Government P. G. College, Hardoi, (U.P.)

Carbonyl compounds having the general strutures

(R and R' may be alkyl or aryl group)

General formula is C_nH_{2n}O

In Ketones, when two groups are same are known as **Simple ketones** and when two groups are not same known as **Mixed ketones** eg.

Nomenclature

Formula	Common Name	IUPAC Name
НСНО	Formaldehyde	Methanal
CH ₃ CHO	Acetaldehyde	Ethanal
C ₂ H ₅ CHO	Propionaldehyde	Propanal
СНО	Benzaldehyde	Benzaldehyde
СН=СНСНО	Cinnamaldehyde	3-Phenyl-2-propenal
но	Vanillin (odour of vanilla)	4-Hydroxy-3-methoxy-benzaldehyde
CH ₃ COCH ₃ CH ₃ COC ₂ H ₅	Acetone Ethyl methyl ketone	Propanone 2-Butanone

Cyclohexanone

Cyclohexanone

Acetophenone

Phenylethanone

Synthesis of Aldehydes and Ketones

- A. From Acid Chlorides
- B. From 1,3-Dithianes
- C. From Nitriles (Cyanides)
- D. From Carboxylic acids

A. From Acid Chlorides

1. Rosenmund reduction:

B. From 1,3-Dithianes

2-Alkyl 1,3-dithiane

C. From Nitriles (Cyanides)

D. From Carboxylic acids

General Physical Properties

- Aldehydes (C_2 to C_{11}) and ketones (C_3 to C_{11}) are colourless, mobile liquids
- Aldehydes and Ketones > C_{11} are solids
- Aldehydes (Unpleasant smell), Higher ones have fruity smell
- ketones (Pleasant smell)
- Solubility rapidly falls with rising M. wt. due to increase hydrophobic chain

Structure of carbonyl groups

- 1) Reduction Reactions
- 2) Nucleophilic Additions
- 3) Condensation Reactions
- 4) Hydride Transfer Reaction
- 5) Condensation Reactions with ammonia derivatives
- 6) Reaction with Phosphine derivatives
- 7) Oxidation Reactions
- 8) Polymerisation

1

Reduction with lithium aluminium hydride or sodium borohydride

RCHO + $LiAlH_4$ \longrightarrow RCH₂OH

Meerwein Pondorf Verley reduction (Reduction with aluminium isopropoxide)

Wolff-Kishner reduction

$$RR'CO + NH_2NH_2 \xrightarrow{KOH} RR'CH_2 + N_2 + H_2O$$

Clemmensen reduction

$$\begin{array}{c} R \\ R' \end{array} = 0 \quad \begin{array}{c} + 4H \\ \hline (Zn-Hg), HCl \end{array} \xrightarrow{R} \\ R' \end{array} \begin{array}{c} CH_2 + H_2O \quad [R,R' \text{ are alkyl or aryl groups]} \end{array}$$

Bimolecular reduction to pinacols

Addition of Grignard reagent (G.R.)

Clemmensen reduction

$$\begin{array}{c} R \\ R' \end{array} = 0 \quad \begin{array}{c} + 4H \\ \hline (Zn-Hg), HCl \end{array} \xrightarrow{R} \\ R' \end{array} \begin{array}{c} CH_2 + H_2O \quad [R,R' are alkyl or aryl groups] \end{array}$$

Bimolecular reduction to pinacols

Pinacol

Perkin Reaction CH₃COONa 180°C $C_6H_5CHO + CH_3COOCOCH_3$ $C_6H_5CH=CHCOOH + H_2O$ Cinnamic acid **Benzoin Condensation** $2C_6H_5CHO \longrightarrow C_6H_5CH(OH)COC_6H_5 \longrightarrow C_6H_5COCOC_6H_5$ Benzil Benzoin Knoevenagel reaction (synthesis of α , β -unsaturated acids) Θ 1. OH 2. H₃O piperidine $CH_3CHO + CH_2(COOC_2H_5)_2 \longrightarrow CH_3CH = C(COOC_2H_5)_2$ $-H_2O$ Ethylidenemalonic ester $CH_3CH=CHCOOH + CO_2$ CH₃CH=C(COOH)₂

Ethylidenemalonic acid

Ð

Stobbe condensation

Reformatsky reaction

THANKS